If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16-8k^2=0
a = -8; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-8)·16
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*-8}=\frac{0-16\sqrt{2}}{-16} =-\frac{16\sqrt{2}}{-16} =-\frac{\sqrt{2}}{-1} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*-8}=\frac{0+16\sqrt{2}}{-16} =\frac{16\sqrt{2}}{-16} =\frac{\sqrt{2}}{-1} $
| 3Y+15x=-15 | | -55.8=-6.2v | | 9(b+15)=4b+150 | | 4x=8=32 | | 12y-16=2y+20 | | 2(x-1)+7=x+5 | | 5x+1x+32-23=180 | | 4x+3+6x=7x-6 | | -60+10x=72+4x | | 2x-4+2=(x-1)+3 | | 35=2x+8 | | 75+1x=135+-9x-7 | | 20=y/4+13 | | 18x-24=-14 | | -2x=52=79+-11x | | 3/4y-5=-1/4y | | -7x-21=7-6x | | 5g-5=25 | | 4x-5+2=(2x-1)-3 | | 61-3x=97-12x-7 | | x=x*20-((600-x)*20) | | 1.84=y-5 | | -5(10n+12)=-5(1+9) | | 12x-93=x+116 | | 2(v-1)=4+2(-3v+9) | | 5x+69=-2+83 | | 8.57=y-6 | | -28-10x=9-9x | | 6x−10 = 32 | | -4x+28=112 | | 40+5x+10x=240 | | 6(-x+3)+3x=-3 |